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INTRODUCTION

Many engineering systems comprise several bodies connected together, with active

control between bodies. Specific examples of such systems include robots and manipulators,

space vehicles, missiles, and precision pointing systems. Because of the increasing tendency

towards lightweight components, many such systems are partially or totally composed of flexible

bodies. The dynamics of such systems can be studied by experimentation or analysis, or,

preferably, both. When an analytical approach is used, modeling is usually one of the first issues

to be addressed. In the study of a complex structure or a system of interconnected flexible

bodies, most modeling strategies rely on a finite dimensional representation of each flexible

component; and the smaller the dimension, the more tractable the analysis. The term model

reduction, as used in structures and structural dynamics, refers to the process of replacing a

complex structure possessing a large numbt of degrees of freedom by a relatively simple model

with only a few degrees of freedom. The main constraint imposed on this process is that the

resulting model should be simple enough to render the analysis at hand tractable, yet "rich"

enough to retain the salient features of the original structure. Obviously, model reduction as

defined above, is a crucial step in the modeling process. It has in fact received considerable

attention in the literature1-10 because of its importance in several areas of engineering,
particularly in the consideration of control methodologies for aerospace systems. Many existing

model reduction techniques solve the "single body problem"; that is, they start with one

(generally large and complex) flexible body and end up with another very much simpler system,

that retains certain properties of the original body that are relevant to the work at hand.

A different type of model reduction problem is encountered whenever one is compelled

to work with components of a complex system. Such a situation may arise in the analysis of a

large structure such as a space platform; here, different analysts are generally assigned different

components of the structure. Hence, a reduced order model of each component must be

generated. A similar situation arises when it is desired to simulate the motions of a system of
interconnected, actively controlled flexible bodies, using a simulation package such as

DISCOS11 or TREETOPS 12. These programs require that each body in a given system be

characterized separately. For a rigid body, geometry and mass properties (e.g. mass, moments of 13
inertia, mass center location, ... etc.) are sufficient. On the other hand, a flexible body 0

necessitates that body mode shapes, frequencies, and damping characteristics be supplied to the

program. And this must be done for each flexible body separately. Practical considerations

drastically restrict the number of modes per body that can be retained in any given simulation. Codes
First, keeping many modes creates the problem of inputing and manipulating huge volumes of -----
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data. Secondly, retaining high frequency modes makes the simulation expensive since

integration time steps will then have to be kept very small in order to capture the contributions of

these modes. Therefore, only a very limited number of modes can be accommodated in a real

simulation - typically about eight modes per body. The question of modal truncation procedure

at the level of system components thus becomes pertinent. This issue is not clearly addressed in

the development of existing multibody programs. It is simply assumed that the user will

somehow decide which modes (not exceeding about eight) of any given body will be used in the

simulation. The most common practice is to "throw away" the modes corresponding to the
highest frequencies.

PROBLEM STATEMENT

The problem to be solved in the course of the performance of this research project is

really an offshoot of a bigger problem. The big problem is that of simulating the dynamics of a

multibody system comprising two or more bodies connected at hinges. Some or all of the

components of the system may be flexible and each hinge may permit one or more degrees of

freedom between bodies. This simulation problem can be solved with the aid of one of the

existing multibody simulation codes such as DISCOS"' or TREETOPS/CONTOPS 2 . In order

to use these codes, the system is usually modeled in a NASTRAN-like environment, so that

mass, stiffness, and modal matrices (among other quantities) are available for the free-free
vibration modes of each flexible body in the system. Component models constructed in this

manner are generally too large, and must be reduced to a manageable size before they can be

used in multibody simulation programs. This model reduction process cannot be arbitrary. In

other words, one cannot, for example, simply decide to retain the first few low frequency modes

for each body. The main task to be performed in this project is to develop a systematic and

scientifically sound procedure for performing model reduction of components of such multibody

systems.

MODEL REDUCTION STRATEGY

Consider a system A of n flexible bodies Al, A2, ..., A, connected by hinges, and with

active control between bodies. If the system is frozen in a certain configuration, then it can be
viewed as one large structure and its NASTRAN type model can be generated for this

configuration. One of several existing model reduction techniques for solving single body
problems can be applied to this system in order to reduce its dimension to a tractable level,
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based on such criteria as control system specifications, bandwidth, etc. Thus, it is possible to

determine those modes of the system as a whole that are relevant to the study at hand. Once

these important system modes have been determined, the component model reduction problem
postulated earlier reduces to that of finding the component modes that contribute substantially to

important system modes. These are the component modes (hopefully very few) that need to be

used for the purposes of simulating the dynamics of this multibody system. Hence, the type of

model reduction needed to prepare modal data for multibody simulation programs can be viewed

as a two-phase process. First, a system-level model reduction is performed using one of the

existing single body methods. Next, a knowledge of the retained modes of the system is utilized

to define useful component modes. There has been very little attention in the literature to the

second part of the process as described above. This is perhaps due to the fact that the few

multibody programs capable of accommodating flexible bodies are not yet enjoying widespread

use. And when they have been used, it has mostly been to solve relatively simple problems
where the component modes to be retained are almost obvious from intuition.

COMPONENT MODEL REDUCTION

The component model reduction procedure developed in the course of this project is

described below using a two-body example. Consider a structure S which is made up of two

interconnected substructures A and B as shown in Fig. 1. Suppose that a few specific modes of S

have been determined to be important for a given system configuration, and it is desired to find

modes of A and B that "feed" these system modes of interest.

A

Fig. 1 System of Connected Bodies

The response xA of A to a forcing function FA is given by the matrix differential equation

MA A + KAXA A (1)
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where MA and KA are the mass and stiffness matrices of A. The modal matrix OA of A can be

viewed as a coordinate transformation matrix, so that

XA = A AA (2)

and if OA is normalized with respect to MA, as is usual in NASTRAN, Eq. (1) can be transformed

into

lAYA + AAYA = OAFA (3)

where 'A is an identity matrix, and AA is a diagonal matrix with squares of body A modal

circular frequencies as elements. If body A has nA unrestrained degrees of freedom, then MA,

KA, 'A , AA, and OA are all square matrices of dimension nA , while XA, YA, FA are column vectors

of dimension nA. Similar equations can be written for body B assuming nB unrestricted degrees

of freedom:

MBB + KBxB = FB (4)

xB = OBYB  (5)

leading to

T

I BB + AaYB = OaFB (6)

For the complete system, S, one can also write

4



M + Kx = F (7)

x = Oy (8)

Iy + Ay = 0 TF (9)

The number of degrees of freedom n of the combined system is such that

n < nA +nB (10)

If a vector x' is defined as

X, x~ =j

where P is simply a permutation matrix which can be found by inspection, then, Eqs. (8) and (11)

can be combined to give

x' = Px = POY = y (12)

The x' vector has dimension n=nA+nB exactly; on the other hand, the x vector has dimension

n<nA+nB as stated earlier. If, for example, XA and XB represent displacements at the discrete

points of A and B respectively shown in Fig. 1, and x is the displacement vector at the same

points for the system viewed as one, it is easy to see that x would have fewer elements than the

sum of the elements of XA and XB. The reason is that the displacement of a point such as P,

common to both A and B, would appear in both xA and xB - that is twice in the x' vector, but

only once in the x vector. Also, the matrix .is obtained from the system modal matrix 0 by

repeating some of the rows, and rearranging some others. The next step is to partition .A as

shown in Eq. (13) below, and also delete those of its columns that correspond to the system

modes to be dropped.

x l O]y (13)

LXBJ -LOBJ
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The resulting submatrices of .. are (PA and q. The PA matrix will now have dimension nA by n',

just as PB will become a nB by n' matrix, where n' (<n) is the number of modes retained at the

system level. Defining

XA (PAUA (14)

XB =(PBUB (15)

and substituting Eq. (14) into Eq. (1), one obtains

MAAiA + KA(PAU A =FA (16)

Premultiplication by (pAT yields

+ T. AA A (17)
(PAM(PAiA + (PKA(PAUA = (PTFA

or

MAUA +KAUA = (pFA (18)

Note that MA, KA are square matrices of dimension n' by n' and they will not normally be

diagonal. The eigenvalue problem corresponding to Eq. (18) is then solved to produce a modal

matrix with the associated eigenvalues. In other words, if A is the modal matrix, one can use

the transformation

UA = AVA (19)

to change Eq. (18) to

6



+AA AVA +AKA AVA -A)PA (20)

or

T T (21)
AA +AA -- AAA

It turns out that XA approximates a submatrix of AA, and

VA = (PACA (22)

is a submatrix Of OA. The elements of )LA turn out to be precisely the eigenvalues of the n' modes

of body A that contribute most to those modes of the system that are retained. Similar steps can

be followed to produce an equation for body B that corresponds to Eq. (21):

T T

IsBV B + XBVB = B BFB (23)

where X]B again approximates a submatrix of AB, and

VB = P B (24)

is also a submatrix of O1B. Here again, XB contains the eigenvalues of the n' modes of body B

that contribute strongly to the system modes of interest. Results can be checked by using any

good modal synthesis scheme to reassemble the reduced bodies A and B. The result should be

eigenvalues and eigenvectors that match those retained for the system initially.

EXAMPLES

To illustrate the effectiveness of the above model reduction method, consider two

"bodies" A and B shown below in Figure 2. Each iG simply a set of rigid disks connected by

torsional springs. The given masses are in kilogram and the spring stiffnesses are in N-m/rad.
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0.0.5

Fig. 2 Mass-Spring Examples
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For A, the mass and stiffress matrices are respectively

r 0.001 0 0 0
0 1.0 0 0 (25)0 0 1.0 0

0 0 0 0.001

[2.0 -2.0 0 0
KA = -2.0 4.0 -2.0 0 (26)0 -2.0 3.0 -1.0

0 0 -1.0 1.0

The eigenvalue and modal matrices are

2002 0 0 0
AA -- 0 4 0 0 (27)

0 0 0 0
0 0 0 1001(

and

1.0000 0.5002 0.5000 0.0000

O=A -0.0010 0.4992 0.5000 0.0000 (28)
0.0000 -0.4992 0.5000 -0.0010
0.0000 -0.5013 0.5000 1.0000

The corresponding matrices for B are:

MB= 0.5 0 ] (29)
0 0.5

KB= 900 (30)-900 900

AB= 0 0 (31)
10 3600J

= [ 0.7071 -0.7071 1 (32)
O . 0.7071 0.7071 J

If point P of A is now rigidly attached to point Q of B to form a combined system, the

relevant matrices for the combined body are:
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[0.001 0 0 0 0
0 1.0 0 0 0

M 0 0 1.0 0 (33)
0 0 0 05 0

[ 0 0 0 0 0.5

S2.0 -2.0 0 0 0

-2.0 4.0 -2.0 0 0
K= 0 -2.0 3.0 -1.0 0 (34)

0 0 -1.0 901.0 -900.0
0 0 0 -900.0 900.0

2002 0 0 0 0 1
0 4.7 0 0 0

A= 0 0 1.3 0 0 (35)
0 0 0 0.000 0

L 0 0 0 0 3597 .4

[ 1.0 0.4925 -0.4131 -0.4472 0
-0.001 0.4913 -0.4129 -0.4472 0

= 0 -0.6718 -0.1512 -0.4472 0.0002 (36)
0 0.1796 0.5637 -0.4472 -0.7066

L 0 0.1801 0.5641 -0.4472 0.7076 .

Suppose it is now decided to retain only two system modes - those with eigenvalues of 2002 and

4.7. The 0 matrix is augmented as described earlier, then its last three columns are deleted, and

the resulting matrix is partitioned in such a way as to generate the following two matrices:

1.0 0.4925 1

(PA = -0.001 0.4913 (37)

0.19-0.67180 0.1796-

[ 0.0 0.1796 (38)9a= 0.0 0.1801

These two matrices are then used as in Eqs.(17-24) to produce the following reduced eigenvalue

matrices for A and B:

A=[2002 01 (39)0 5

and
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)B=[ 0 0 1 (40)
0 3600

It is seen that "A and XB' as given in Eqs. (39) and (40), clearly approximate the original

eigenvalue matrices of A and B respectively.

LARGE RELATIVE MOTION

The analyses presented above cease to be valid once any component of a system under

consideration is allowed to take on large displacements relative to any other part of the system.

Such is the case with the system shown in Fig. 2. This system consists of two flexible bodies A

and B connected through a one degree of freedom hinge. If a multibody simulation code is to be

used to study the dynamics of such a system, then, modal description of the model of each of the

system components will be needed as input, while model reduction criteria will generally be

available at the system level only. The model reduction technique described above can still be

used if a quasi-static approach is adopted. This requires that system modal data be available for

several key configurations of the system. For example, system modal data could be generated for
six equally spaced orientations of the body B relative to the body A. The modal reduction

technique described above can then be used to determine the needed component modes for each

system configuration. It might seem that such consideration of many system configurations

could give rise to a prohibitive number of required component modes. In practical cases, it is

unlikely that the sets of required component modes that emerge from the system configurations

considered will be disjoint; in fact, the difference between these sets should be practically null,

so that the total number of component modes to be retained should remain reasonable.
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B

A

Fig. 3. System Permitting Large Relative Motion

SUMMARY AND CONCLUSION

The use of multibody simulation programs for the study of large displacement motions of
systems of flexible bodies adds another dimension to the model reduction problem. In general,
straightforward criteria are available for performing model reduction at the system level;
however, simulation codes normally require modal data input for each component body of a
system rather than for the system as a whole. It is thus always necessary to determine the modes
to be retained for each component based on knowledge of the system modes of interest.

The method presented in this report for component model reduction utilizes submatrices
of the system modal matrix as transformation matrices used to accomplish the first phase of a
two phase matrix diagonalization process. This method is systematic and, as demonstratedabove
using simple mass-spring systems, the method gives very accurate results. The method has also
been tested on a model of the Galileo spacecraft, and gave excellent results.
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